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Introduction

An asymptotically stable system can be characterized in terms of its impulse

response sequence (Markov parameters) and its output covariance sequence

(covariance parameters) due to a zero mean white noise input process. A general

approach has been developed [3] for realizing a system which matches q Markov

parameters and q covariance parameters. Such a system is referred to as a q-

Markov COVER, and q-Markov COVERs may be generated from output data

[3,4] or from higher order models [5,6]. The Markov and covariance parameters

are not independent and consequently the q-Markov COVER is not unique. In

particular, all q-Markov COVERs are not related by state space similarity

transformations [4]. In this paper we shall exploit the remaining degrees of free-

dom to optimize the q-Markov COVER realization with respect to an aspect of its

finite wordlength realization.

Specifically, when digital controllers are to be implemented, both the con-

troller coefficients and the controller states must be represented in finite

wordlength precision. This finite wordlength (FWL) representation (or quantiza-

tion) causes inaccuracies in the response when compared to the ideal (i.e. infinite

precision) behaviour. Effects of quantization on the controller are increased noise

at the output due to internal state quantization, and errors in time and frequency

response characteristics due to coefficient errors.

In digital filter design, the FWL effects are known to be most significant

when the poles of the filter are very close to the unit circle [12]. In particular,

narrow band filters have all these poles near z = l+jo. For digital control, the

zero-order-hold equivalent of a continuous time model (or controller) with a pole

at _, will have a discrete pole at exp (_,T). Hence for fast sampling and/or low

damping of the continuous models, the discrete model will behave like a narrow

band filter. The synthesis of optimal digital controllers with respect to

arithemetic quantization noise is an important consideration in design especially

for continuous time systems operating under a fast sampling rate [9,10]. The

effects of quantization depend highly on the structure of the controller. This

paper seeks to reduce these errors in the synthesis of q-Markov COVERs.

1. Discrete q-Markov COVER

Consider the asymptotically stable nominal discrete system
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x(k+l) = Ax(k) + Bu0c); x(k)cRn_,u(k)eRn"

y(k) = Cx(k) ; y(k)_Rn' (1.1)

where (u(k)} is a zero mean process with unit intensity E {u(k)u*(j)} = ISij and

E {x(k)u*(j)} = 0 for k > j. The Markov parameters M i and covariance parameters

Rj of (1.1) are defined by

Mi =a CAiB ; Rj _a CAJxC* ' j > 0, Rj __aCXA*J¢y ' j < 0 (1.2)

where the state covariance matrix X satisfies the Lyapunov Equation

X = AXA* + BB*. (1.3)

These parameters M i and Rj appear as coefficients in the exp!msion of the transfer

function H(z) and power spectral density H(z)H*(z-t); that is

oO

H(z)= C(zI-A)-1B = gMiz-(i+l); H(z)H*(z)= i Rj z-j

i=0 :=---

We suppose that as data we arc given the first q-Markov aLnd first q-covariance

parameters {M i, Ri; i = O, 1, ..., q-l} of an asymptoticall_ _ stable system from

which we construct the two data matrices

Oq_Rq-M_ _R_'_

D--q___AR q- M--qM'-_ e R n_qxn_q

where R q, Mq and Mq are the Toeplitz matrices of the data at_defined by

"Ro RI ... R,_..i

R, 1_ ... R,;._
Rq_ -A : : :

Rq--2 ......

Rq_1Rq_2... Ro

(1.4a)

(lAb)

0 0 ... 0 0

Mo 0 ...oo

• . • .**

Mq_2M,r3 ... _ 0

M o 0 ... 0

M t M_ ... 0

i,r_2 0

The first data matrix Dq in (1.4a) is Hermitian and it is t;hown in [3-4] to be
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positive sernidefinite. Hence we can obtain a (nonunique) full rank factorization

D q = VqP;; VqSR r_Ixr', (l.5a)

where

rq A rank (D q) = rank(Pq) < nyq

If we partition Pq according to

P;-FE; F;]; EqSR nr'tr', FqSR (q-1)n_xrq

then it follows that the second data matrix D q can be factored as

where

&-PqPq; PqeR nctxq

P; -" [17; G;]; GqCR n)xxq

The following result has been established.for some Gq (to be determined).

(1.5b)

(1.6)

(1.7)

(1.8)

Theorem 1.1 [3]

Given the q Markov parameters {Mi; i - 0,1 ..... q-1 } and the q covariance

that (1.7) isparameters {Ri;i=0,1,...,q-1} and a matrix Gq in (1.8) such

satisfied, then the realization {Aq, Bq, Cq} of order rq defined by

Aq = P_ffq; Bq = P_'[M_ "'" M__I]*; Cq = Eq (1.9)

where P_ denotes the Moore-Penrose inverse of P is a q-Markov COVER. The

corresponding controllability grammian Xq is given by

Xq = I (1.10)

Furthermore

Pq = [C; A;C; " "" (Aqq-l)*c;] * (I.II)

This theorem describes a large but not complete class Cq of q-Markov COVERs

parameterized by {Gq} such that for some Eq,Fq the data matrices Dq, Dq satisfy

(1.5)-(1.8). Each matrix Gq will (generally) result in a q-Markov COVER having

a different transfer function. In order to compute the set of all such Gq, observe

in (1.5)-(1.8) that
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Then

_lqq_ R _

implies

$

EqE; = 17,o, FqF; = D--q_l, FqGq = dq, Oq(]; =

Now expand Dq in terms of its singular value decomposition

Dq= (Ut U2) [_01 _I IU_]lu;j;
Then from (1.12a)

(1.12a)

(1.12b)

(1.131

(1.14)

(Eq Fq) = Y'.tt/2U; (1.151

so that Eq = Cq is defined by the first ny rows and Fq by the last (q-1)ny rows of

UI_I 1/2. Define

A
pq = rank (Fq). (1.16al

(1.16b)

If strict

Then from (1.15)

pq _ rain (rq, (q-1)ny).

Next, expand Fq in (1.13) in terms of its singular value decomposition.

inequality occurs in (1.16b1 we have

Fq-- IDa U0 Iv;j;
The Moore-Penrose inverse F_ of Fq is then given by

(1.17)

(1.18)

Corollary 1.1

85"9
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where

and

Define

(i)

(ii)

Gql -"

* A- -*--+ --
Gq2 e R n'_ such that Gq2Gq2 -- dqq-dqDq_qdq

(1.19)

Sq=Arank[% -*--+-dqDq-i%] (I .20)

(iii) Gq3 =A V; E R (rq-'pq)xrq . (1.21)

Then if strict inequality occurs in (1.16h) the set of all Gq which satisfy (1.13) are

given by

Gq = Gql + Gq2UqGq3 (1.22a)

where

Uqe R s_x(rq'p0 ; Sq < rq - pq < ny (1.22b)

is an arbitrary row unitary matrix (i.e. UqUq = I). Furthermore, if the Moore-

Penrose P_ of

P, = [E; F;]* (1.23)

is expressed as

P_'= [I: n L12] ; £ne R qx(q'D_' , LI2e R rq_' (1.24)

then the corresponding state space representation {Aq, Bq, Cq} of the q-Markov

COVER is given by

Aq=Ln +Lt2Gq; Ln =£nFq6 R r_q

Bq- P_tM_M; "'" M__I]* ; Cq=Eq. (1.25)

If rq = pq, then Gq = Gqi is unique.

Proof: The expression for FqG; in (1.13) implies G; is of the form

G; = F_% + G_M*; MeR _'x(rq-pJ

for some M. Then expanding GqG_ using (1.13) we have

860
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dqq = dq (F(_) F_Idq + clq(Fq+) Gq3M + MGq3F,_ dq -- MGq3Gq3M

Also from (1.13) and (1.21)

J "q - _'q-1, Gq3Gq3 = I ; ---0

so that

Since MM* has rank sq,

-- --, +, +_"
MM" = dqq - dq(F,_) F,_dq

Sq = rank(Oq2Gq2) <_ rq - pq

(1.26)

2. Optimal Finite Wordlength q-Markov COVER

A fixed point finite wordlength realization of the idea) (i.e. infinite precision)

q-Markov COVER (1.1) shall be referred to as a q-FWL Markov COVER and is

described by

R(k+l) = _,Q[t(k)] + §Q(k)

_(k)=L-'Q[g(k)] (2.1)

Q[t(k)] = t(k) - e(k)

where e(k) is the error in computing t(k). The componenrts of the matrices ,_, §,

are assumed to have a W o bit fractional representation obtained by quantization

of the components of A, B, C in (1.1). The components o)! _(k) have a W+W 0 bit

fractional part while components of Q[t(k)] and fi(k) all have a W bit fractional

part. The components of the state residue vector e(k) has a W+W o bit fractional

representation in which the most significant W bits are zero. The LHS and RHS

of (2.1) are therefore consistent with respect to their fractional wordlength

representation. The number of bits required to represent _he integer parts of ,_, §

and C depend on the dynamic range of the coefficients. State space structures in

which all coefficients are less than unity are therefore adv_mtageous in this regard.

The required integer representation of Q[t(k)] will depend on the dynamic range

of the input signal fi(k). Inadequate dynamic range will result in arithmetic

overflow. The accuracy in the computation of t(k) is determined by its fractional

wordlength W.

Define the state error vector ex(k) and output error vector ey(k) by
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_(k) _ t(k) - x(k); £y(k) __a_(k) - y(k) (2.2)

Then from (1.1), (2.1) and (2.2)

_(k+l) = A_(k) - Ae(k) + AAQ[_(k)] + ABu(k) + BAu(k) (2.3)

ey(k)= C (k) - Ce(k) + ACQ[: Ck)]

where

AA=A-A; AB=§-B; AC=(_-C

Au(k)= Q(k)-uCk)

There are five terms which contribute to the output error (i) internal arithmetic

errors e(k) due to state quanfization (ii) coefficient errors due to errors AA in A

Off) AB in B (iv) AC in C, and (v) input quantization errors Au(k). Under weak

'sufficiently exciting" conditions on the input [u(k)} it can be shown [6] that if

Q[.] in (2.1) denotes 'roundoff' quantization, then {e(k)} is a zero mean uniform

white process with covariance

E {c(k)e*(k)} =y2I; y2= 1-_ 2-2w" (2.4)

Similarly {Au(k)} is assumed to be a zero mean white uniform process with

E {Au(k)A*u(k) } = y2I (2.5)

We assume that the quantized coefficients _,, ]_, (2 are obtained by rounding A, B,

C to W o bit fractions. Consequently, all components Ap of the error matrices AA,

AB, AC satisfy

1 2-Wo (2.6)
IApl <%; ¥o=_- .

For simplicity we normalize the error matrices and define 8A, 8B, 8C by

8A __al__ AA; 8B __aI__. AB; 8C __aI__. AC (2.7)
Yo Yo %

so that all components 8p of 8A, 8B and _ satisfy

18pl < 1. (2.8)

The steady state output error covariance Y of {_Oa)} is then given by (we assume

independence of e(k), e(k) and t(k)).
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where

and

Y = CPC* + _CC* + yo2(BC)(_Z+_I)(BC)"+ Yo72[C(_C)"+ (8C)C'], (2.9)

P=_ {_x(k)_(k)}

=APA*+y_AA*+yo2(SA)(X_I)(SA)*+?o2(8B)(BB)"+?2BB"

- E {R(k)R*(k)}= ,Tk_Z(/_)*+ _X(A)" + (I-_)1313"

For the remainder of this section we assume no coefficient errors (i.e. Yo = 0 in

(2.9)) and consider only the effects due to finite state wordlength (FSWL). The

issue of coefficient error shall be resumed in Section 4.

Theorem 2.1

Define the output noise measure

J=a trtY].

Then for Yo = 0

where

J = y2{tr[K]+ tr[B*KB] }

K = A*KA + C*C.

(2.10)

(2.11)

Proof: From (2.9)

where

Now

and

so that

Y = C['C*; P= AI_A" +y_Z=P + _I

Z = I + BB*;

P=_ _ Akz(Ak)"

k---0

K = _ (Ak)*c*CA k
k_
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=

A fixed point q-FSWL Markov COVER corresponding

Markov COVER (1.1) is therefore described by

R(k+l) = AQ[R(k)] + BOOt)

DEI2

to the (ideal) q-

S,(k) = CQ[R(k)] (2.12)

Q[_(k)] = _(k) - e(k)

The output noise gain (fix) due to state quantization and the output noise gain

(flu) due to input quantization are defined by

fix __atr[K]; flu _ tr[B*KB] (2.13)

The noise gain fix generally varies with state space representation whereas _u is

independent of the coordinate basis. Specifically, consider the q-FSWL Markov

9(k+l) = A Q[9(k)] + B fi(k)

y(k) = C Q[_.(k)]

Q[_(k)] = _(k)-f(k)

A = T-'IAT, B = T-1B, C = CT

COVER

(2.14a)

where

(2.14b)

and Q[_.(k)] has a W bit fractional representation. Assuming 'sufficient excita-

tion' by fi(k), the state residue sequence {f(k)} in (2.14a) due to roundoff quanti-

zation will again be a zero mean white uniform process with covariance ¢I as in

(2.5). The corresponding output quantization noise gains TIz and flu due respec-

tively to state and input quantization am given by

=  [KJ; 4. = ] (2.1S)

(2.16)

where B is given by (2.14b) and

Kz = A KzA * + C*C .

But from (2.11), K z = T*KT, so that
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Tlz = tr[T*KT]; _u = tr[B*KB] (2.17)

Notice from (2.13) that the noise gain Tie due to input quantization errors is unaf-

fected by a similarity transformation. Conversely the noise gain Tlx due to state

quantization generally changes with co-ordinate bases. There is no change if T is

unitary. The q-FSWL Markov COVER (2.14) is superior to the q-FSWL Markov

COVER (2.12) if

1"1z < 11x • (2.18)

However the comparison in (2.18) must be made under the assumption of identi-

cal scaling of the states _(k) and 9(k). Specifically, equal 12-_caling of gain ot

from a zero mean unit intensity white noise input fi(k) to the state components

_j(k) of R(k) requires

Xii = {x for all j (2.19)

where Xii denotes the jth diagonal component of the state covariance matrix X

given by (1.3). Equal 12-scaling of gain cx of components of _(k) in (2.14)

requires

Z_ = _; Z = AZA * + BB * (2.20)

Equality in 12-scaling of representations (2.12) and (2.14) is equivalent to equality

in the state dynamic range (i.e. number of bits in the integer representation of

states) for a given probability of overflow. We now state a resuitt which is impor-

tant for establishing 12-scaling.

Lemma 2.1 [8,9] Suppose M = M* > 0 is an nxn matrix. Then a necessary and

sufficient condition for the existence of a unitary matrix V such that

VMV_--- a for all j

is

tr[M] = not

EIEI_

We have shown in Lemma 1.1 that different similarity transformations of an

ideal q-Markov COVER corresponds to different factorization of the first data

matrix Dq in (1.5a). Our aim is to optimize this factorization.

Definition 2.1

86Y
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The Optimal q-FSWL Markov COVER minimizes the output quantization

noise gain rl due to state quantization errors; that is

rlopt = _m_n tr[T*KqT]; T*T = A -1 (2.21)

subject to the 12-scaling constraint:

Aii = a for all j (2.22)

where the observability grammian Kq satisfies

CqC (2.23)
with {Aq, Bq, Cq} defined by (1.22)-(1.25).

[:I::I3

In corollary 1.1 we have shown that all the degrees of freedom available to

select Gq are confined to an arbitrary row unitary matrix Uq. We now show how

to optimize Uq.

Theorem 2.1

a. The optimal q-FSWL Markov COVER (1.25) is defined by

nopt = rq 1 min (tr[I_'_]) 2 (2.24)
Uq

where UqE R sqx(q-pq) is an arbitrary row unitary matrix and Kq satisfies

(2.23).

b.

C*

The transfer function of the optimal q-FSWL Markov COVER has Hankel

singular values given by the eigenvalues of Kq defined by the minimizing

uq.
Suppose Uq = Uqo is the minimizing solution corresponding to the optimal

Gq= Gqo in (1.22a). Let {Aqo, Bqo, Cqo} be the corresponding state space

realization in (1.24). Then the optimal q-FSWL Markov COVER has a

(nonunique) state space representation {To1AqoTO, TolBqo, CqoT} where

To = UjtoV o (2.25)

such that

(i) the unitary matrix U o is defined by
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* 2UoKqoU,-_
where

I_- AqoKqoA_o + C_oCqo ; _=_ = diag{(_0, ol)l.0,..., o_4o}

in which {a 2 } are the optimal Hankel singular values (eigcnvalucs of z_).
(ii)

I ', ___

and (iii) V o is unitary such that

• k=l
(v.zov.)z=

rq

(2.26a)

(2.26b)

(2.27)

-- for all j (2.28)

_ol_--a _q (optimal) = 1 (_ Ok.)2

a"rq k=l

(2.29)

Proof: By corollary 1.1 we have for Gq defined by (1.22) for any row unitary

matrix Uq (of appropriately specified dimensions) that Gq defines a q-Markov

COVER. The corresponding realization {Aq,Bq,Cq} for esi'h such Uq has identity

controllability grammian and obscrvability grammian Kq defined by (2.23). Now

given a particular Uq, apply a similarity transformation

T = U,_oV_

to the given q-Markov COVER. Then

_xr'KqT)=_._U:I_O.)
and

(T'a3-'=V.,,.2V.

By lemma 2.1, the 12-scaling constant can be satisfied tPor some V. provided

tr(_ -2) = not. Following Williamson [1, Theorem 4.1] (wi_h a minor modification

of the 12-scaling constraint), the optimal performance is given by
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rq

(y a)2
w=l

_ = (g2rq

where {t_j21 are the eigenvalues of Kq. That is,

rq

j=l

The optimal q-FSWL Markov COVER therefore achieves the minimum in (2.24).

The structure of U o, x o, V, in (2.25)-(2.29) follow directly from Williamson [1]

(see proof of Theorem 4.1 with U = 1).

3. Computation of the Optimal FSWL Markov COVER

Necessary conditions for the optimal solution in Theorem 2.1 can be

obtained using the method of Lagrangc multipliers. Specifically, let

J = (tr[I_A]) 2 + tr[A(-Kq+AqKqAq + CqCq)] + tr[a(I-UqUq)] (3.111)

where

Kq=Kq½KI _" A=A*eRr'rXrq; ta=ta*_R "_' (3.1b)

are symmetric Lagrange multipliers. After taking derivatives of J using (1.22)

and (1.25)

i}J
0"-A-= -Kq + AqKqAq + CqCq

_}J = I- UqUq- ff

_J
--= 2I- 2AKq½ + 2Aq/L_Kq ½ (3.2)

oJ =20  L ' IqA ACb--2nU,
BUq

By setting these derivatives to zero we obtain the following result.

Lemma 3.1 Necessary conditions for the derivation of the optimal q-FSWL Mar-

kov COVER are given by
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where

Kq- A_KqAq + _Cq

A - AqAAq* + Kq-½ ;

UqU; - I

_'_Uq - PqUq_q "- Rq

A = A*e R rq_a'q

Uq _ R sqx(r,-pq)

; _ - f_* e R s_sq

(3.3)

Pq = Pq = Gq2LI*2KqLlaGq2 e R sqx.,

Qq = Q_ = Gq3AG;3 e R (rq-pq)x(rq-P0 (3.4)

Rq = G;2LI2Kq(LII+LI2GqI)AGq3 e R Nx(rq-¢0

and Aq, Gqj,Lij arc dci_ne£] by (1.20)-(1.24)

CI313

These necessary conditions cannot be solved explicitly tbr the opdmal row

unitary matrix Uq and so an iterative procedure is required. One possible algo-

rithm isnow described.

Recursive Algorithm for Optimal q-FSWL Markov COVER:

(0)

(I)

(3.5a)

Compute Kq(j): Zl(j)-- Aq*(j)Zq(j)Aq(j)+ C:Cq (3.5b)

Compute A(j): A(j) = Aq(j)A(j)A;(j) + Kq-½(j); A(j) = A*(j) (3.5c)

(3.5d)

Setj - 0 and choose any row unitary Uq(0) in (1.21a)

Form Aq(j) from

Aq(j) -- (LII + L12Gql ) + L12Gq2Uq(j)Gq3

(2)

(3)

(4) Compute Pq(j), Qq(j) Rq(j):

A" )pq(j) "" G;2L_2Kq(j)L12Gq2; Qq(J) - Gq3 (J)G(13;

Rq(j) = G;2L12Kq(j)(LI I+L12Gql)A(j)Gq3
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(5) Update Uq(j) by solving the nonlinear algebra problem:

['_(j)Uq(j+l) - Pq(j)Uq_+1)Qq(j) = Rq_), [2(j) - Q*(j)

. 111 .

Uq(j+1)Uq_+1) - I

(3.5e)

The most difficult step at each stage of the algorithm is to solve (3.5e) for a row

unitary Uq(j+l) and symmetric f_(j). There is generally no explicit solution

except for the following special cases.

Lemma 3.2 Consider the equation

nUq - PqUqQq = Rq; n E R s_

where

are given.

(3.6)

Pq=PqER'_, Qq=O_GRc_,-p_c_,-p_,p.q_R'÷c_,-PO (3.7)

Then there exists an analytical solution (f_,Uq) with _ symmetric and

Uq row unitary when Sq -- 1 or Qq - [_L ([3 scalar)

a. When Sq= 1, _1 and Pq are scalars and Rq is a row vector. Then Uq is arbi-

trary for Rq - 0 while for Rq _ 0

Uq = Rq([2I-PqQq)-l; IlUqll = 1 (3.8)

b. When Qq = [_I, let Rql_ have the singular value decomposition

where _-,qt is invertible. Then

*+ --_ *
Vl_Y__lVlUq"(VI) A_.ql VIRq; f_=[_Pq+ ½ *

In particular, when RqR_ has full rank,

=

(3.9)

(3.10)

Proof: For case (a)

Uq(f_I-PqQq) = l_l; _ SCalar

so that (3.8) follows by the row unitary property UqUq - I. In case (b)

870
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(_'_ -- _Pq)Uq "" Rq

and using the row unitary property of Uq

(__[_pq)2 = RqRq

Hence using the SVD of RqR_

VI___V_Uq "- Rq

But V_V I= I and V_ has fullrow rank which gives (3.9).

£3[3O

Strictly speaking, (3.8) is not an analytical solution since the scalar _ must still

be chosen so that IIUqll= 1. Note that by Corollary 1.1, Gq3Gq3=I so that

Qq(j) = I in (3.5b) if A(j)= I. The necessary condition (3.5e) is equivalent to

assuming Kqfj), A(j), Pqfj), Qq(j) and Rq(j) are known and optimizing over row

unitary Uq(j+l). That is, after dropping the index j and j+l in (3.5e) we have the

following result.

Lemma 3.3 Suppose Pq, Qq and Rq in (3.7) are known. Then a necessary condi-

tion for a row unitary matrix Uq to achieve optimally foi the problem:

rain trtQqUqPqUq + 2RqUq], Uq _ R sqx(rq'po (3.11)
uq

is that there exists a symmetric matrix f_ such that (3.6) is satisfied.

Furthermore, the optimization in (3.11) is equivalent to

rainJ(U); U _ R (rq--pq)X(rq--pq) (3.12a)
U

where

J(U) = tr[QU*PU + 2RU]

over unitary matrices U* = [Uq Vq] where Q = Qq and

R -- ['Rq 0] E R (q-POX(rq-pO

(3.12b)

The advantage of the point of view (3.12) is that U can be treated as a square
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matrix. The solution to (3.12) when U is a 2x2 unitary matrix is provided in the

following lemma. The result can be derived by directly substituting into (3.12).

Lemma 3.4 Suppose P = P* = [Pij], Q = Q* = [qij] and R = [rij] are 2x2 matrices.

Then the minimum in (3.12) over 2x2 unitary matrices U is achieved by either

(i) U = diag{ul,u2} where u?= 1, u_= 1 minimize

or(_)

where Ixl < 1 minimizes

Jl = rnul + r22u2 + 2ql2Pl2UlU2

J2(x) = ax 2 + 2bx + 2(cx+d)'_i-_

a= (Pn-P22)(qn"q22), b =rn+r22

c = qI2(PII-P22)+ P12(q22--qll),d = r21- r12

(3.13)

(3.14)

UET]

Note that we must optimize over the disjoint sets of 2x2 unitary matrices consist-

ing of signature matrices (as in (3.13)) and rotations (as in (3.14)). The optimal

solution of (3.13) can be obtained by inspection of the magnitudes of the

coefficients in uj. For example, suppose

Irnl > Iq12P121 _ Ir221

ul =-sgn(rll); ulu2=-sgn(q12p12)

Then

However the optimization in (3.14) requires numerical solution.

A general nxn unitary matrix U is either a signature matrix (i.e. a diagonal

matrix _ such that _2 = D or a product of 1/'2 n(n-1) rotations Uij where the

components of Uij(k,l) Uij are defined by

Uij(i,i) = Uij(j,j) = cos0ij (3.15a)

872
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Uij(i, j) =-Uij(j,i ) =sin Oij

Uij0c,k) = 1 for k_i, k _ej

Uij(k,1) = 0 otherwise

A particular signature matrix is also defined by (3.15b) where

Uij(k,k) = +1 for k = i,j

(3.15b)

By letting

Uij(k,l)= 0 for k _ I (3.16)

U=_Uij
td

The optimization in (3.12) can be reduced to a sequence of one dimensional

optimizations over the angles 0ij. To be complete, J(U) should also be evaluated

separately for all 2 n (n = rq--pq) signature matrices. A compromise during the

iterative procedure is to include the possibility of components Uij being defined

by (3.16) as well as (3.15a). Rather than present the general result we only illus-

trate by means of an example.

Specifically, suppose we express a 3x3 unitary matrb: U as

U = U12U13U23 (3.17)

Then by invoking the trace property, J in (3.12b) can equivalently be expressed as

J(Uij) = trtQijUi_PijUij + 2RijUij] (3.18a)

Q12 = uI2U23QU_3U13; P12 = P; R12 = U23U13R

Q13 = U23QU_3; P13 = U12PU12; R13 = Ur23RU12

Q23 = Q ; P23 = U13U12PU12U13, R23 = RU12U13

(3.1Sb)

where

With i =io, andj =Jo fixed in (3.18a), J can be optimization over Ui,i.. The pro-

cedure is recursive. That is, first assume i = 1, j = 2 with U13 and U23 both initial-

ized to (say) the identity. After optimizing over U12, fix U12 and U13 and optim-

ize over U23, etc. Many cycles may be necessary for convergence.

In order to explicitly demonstrate the formulation for each of the 2x2 optim-

izations consider the case i = 1, j = 2, and express

873
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Q12

Q12 = 2

Q'12 QI2]

! ! !

where Q12, P12, R12 _ R2_'. Then

minimizes Jl2(I.llz) also minimizes

P12 2

2

from (3.15), (3.16) the optimal 012 which

1 l 2 2

J12(012) = tr[Q12UoPI2U 0 + 2(RI I+Q12PI*2)U 0]

where components of the 2x2 unitary matrix U_ is defined by (3.15a) or (3.16) for

i, j, _ { 1,2} The 2x2 optimization of J12(012) over 012 is partially solved in lemma

3.4.

Before concluding this section it is important to reiterate that the dimension

of the problem for optimizing over the row unitary matrices Uq is generally low.

In particular from (1.21b) both the number of rows and columns of Uq is not

greater than the number of outputs. For a single output systems, Uq is a scalar

and so there are at most two possibilities, and no optimization is necessary. That

is, for pq < rq we merely evaluate the cost in (2.24) for two values of Gq in (1.21a)

corresponding to Uq = +1, while if pq = rq, then Gq = Gql is unique.

4. Coefficient Errors

Recall that Y in (2.9) is the error in the covariance of the output {$,(k)} due

to finite precision implementation of both states and coefficients of the q-Markov

COVER. The optimal q-FSWL Markov COVER minimizes the trace of Y when

there are no coefficient errors (corresponding to Yo= 0). Furthermore, when there

are no coefficient errors, there are no errors in either the Markov parameters M i or

covariance parameters Rj in (1.2). Once coefficient errors are introduced and all

finite wordlength (FWL) errors are considered, there is no longer a clear interpre-

tation of what should constitute the optimal q-FSWL Markov COVER. One pos-

sibility is to again attempt to minimize the trace of Y. Alternative performance

criteria could be based on the errors AM i and ARj in the Markov and covariance

parameters as given by

M i + AM i = (C+AC)(A+AA)i(B+AB);

R + ARj = (C+AC)(A+AA)JX(C+AC) '' (4.1)

where 'X satisfies X = A,V_A* + BB*. For example, one could attempt to minimize
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CM_ _ U'[AMi(AMi)'] OrCR _ _'. trlARi] (4.2)
{=0 i=0

However there are no results which directly connect C M ¢,r C R with errors in time

or frequency response of the q-Markov COVERs. Fur:hermore, the analytical

and computational aspects involved in the resulting optimization would be very

difficult if not practically impossible.

A convenient approach to parameter optimization i_ to assume a statistical

model for parameter errors. A statistical design can be ju stifled along the follow-

ing lines. Suppose (as is the case in practice) that both the: Markov parameters M i

and covariance parameters Rj are known only to be accurate up to a specified

wordlength, and any higher precisional representation is J:egarded as uncorrelated

random noise. Then the calculation of all q-Markov O:)VERs (for a particular

row unitary matrix Uq) will also only be accurate to a finite precision beyond

which the parameter representation contains uncorrelated random noise.

Lemma 4.1 Suppose M = M*> 0 and K = K*> 0 are given nxn matrices. Let

vj E Rn be a zero mean random variable uniformly distributed between +1 with

uncorrelated components which are also uncorrelated with components of v i.

Then we have

Furthermore

where

1
E {vj'Mvj} -- _- v[MI. (4.3)

1
E {tr[V*MVK]} = _ tr[MK] (4.4)

V= [v{v 2 "" Vn]eR r_.

[=EI3

Unfortunately these results cannot be applied directly to (2.9) since X itself is a

random variable. However if we approximate X by X wd-_can deduce the follow-

ing result.

Theorem 4.1

Suppose the components of 8A, 8B and 8(2 are zero mean uncorrelated ran-

dom variables uniformly distributed between +1. Then E{J} where J= tr[Y] is



-22-

approximated by E {]} where

3,2 y2

where K, X are defined by (2.11) and (1.3).

[2EI3

(4.5)

Proof." From (2.9) ignoring the linear term in 842

j= _{tr[K]+ afB'IO]} +

y2{ _[(SA)*X(SA)K]+tr[(SB)*K(SB)] + tr[(SC)*X_2]}

The resultthen followsusing Theorem 2.1.

[II3

Under a similaritytransformationT, the performance measure (4.5)becomes

2 y,2

{JT) +(?+ + rr-'xcr-')'j(4.6)

Note thatboth tr[B*KB] and tr[XK] are invariant.In fact the invarianteigen-

values {Ok2} of XK are the squaresof the Hankel singularvalues of the system

definedby {A,B,C}. Consequently we nccd only considerthe minimization of

(_2 + _-)tr[T*KT] + -_- trtT-'X(T"I) *] (4.7)

over similarity transformations T. We make use of an earlier result [8] to provide

the minimum in (4.7).

Theorem 4.2 [8]

Consider a minimal asymptotically stable order system {A,B,C} with con-

trollability grammian X and observability grammian K. Let X and I( be the

transformed grammians as a result of applying a similarity transformation T; that

is

= T-Ix(T-t)*; K = T*KT (4.8)

Then
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n

k=l

whore {Ok2} are the Hankel singular values.

(4.9) if and only if

1i

(4.9)

Moreover equxlity is achieved in

In particular, in (4.7)

raine 0T) =  tr[B'KB] + -y-(2.;ok2+2aZ' k)
T k=l k=l

where

(4.10)

(4.11 a)

o_= '_1 + 3(y/yo) 2 (4.1 lb)

The minimum value is achieved in (4.11a) when K, X satisfy (4.10) with ¢x given

by (4.11 b)

[T3CI

One optimal realization (4.10) is a scaled internally balanced structure; that is

XI = °_-ldiag{°l, a2 .... , arq}; I_1 = 0_ diag{_l, a2, ..., arq } (4.12)

From the point of view of 12-scaling, equal diagonal components of X guarantee

equal dynamic range of the state components. It is evident from (4.10) that any

unitary transformation lJ applied to the coordinate basis hav_ing X and K as the

respective controllability and observability grammians will not alter the optimal

performance. Consequendy an optimal realization in which all diagonal com-

ponents of the controllability grammian are equal exists with controllability

grammian 0*XI0 and observability grammian 0*I_llJ such thlat

rq
l_*_ll_jj = ! _ ¢_k for all j (4.13)

m'q _1

where X1, I_l are defined by (4.12) and LJ unitary. The existence of 0 is

guaranteed by lemma 2.1 and an explicit algorithm for constructing a (nonunique)

lJ is available in [9, Appendix A].

Corollary 4.1

The optimal q-FSWL COVER which minimizes (2.21) subject to the 12-

scaling constraint
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Aji= _'_" Z c_ forallj
q k=-I

(4.14)

also minimizes E {JT} in (4.6)

VITI

This result provides a connection between the optimal q-FSWL COVER structure

which minimizes only the effects due to state quantization noise, and the subop-

timal q-FWL Markov COVER structure which minimizes E {JT} subject to the

assumed random parameter error model stated in Theorem 4.1. Once again we

note that the result is suboptimal in the sense that X and X in (2.9) and (4.5) are

only approximately equal. The result of Corollary 4.1 is also only of academic

value since the 12-constraint (4.14) is not known until the design is complete since

the Hankel singular values {aj} depend on the optimal row unitary matrix Up as

provided in Theorem 2.1. However a more explicit result can be stated.

Corollary 4.:z

The optimal q-FSWL cover subject to the 12-scaling constraint (2.22) also

minimizes E {iT} in (4.12) subject to (2.22).

CEI3

5. An Example

Consider a 5 mode simply supported beam of length 7r having 2 inputs Ul, u2

and 2 outputs Yl, Y2

u I = F(0.2_,0, u 2 = T(g,t)

Yl = 0(0,0, Y2 = $t(0.6g,t)

where F(0.27r,0 denotes a force applied at .27r units from the left end of the beam,

T(x,0 denotes a torque at the right end of the beam, 0(0,0 denotes angular

deflection at the left end, and tt(0.6_r,t) denotes rectilinear deflection at 0.6_ from

the left end of the beam. The equations of motion are assumed to be described by

[ul_k + 2_ka_kllk + ¢j_k21]k= [sin(0.27tk) kcos(rtk)] u
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EYt- IY - k=l L sin(0.6xk)J "Ok (5.1)

where o._ = k 2 rads/see, and _ = 0.005. A continuous time 10th order state space

model is defined by

i=Fx+Gu, y=Cx

where

X = ("Ol_I 112112 "'" 'o5h5)*

A zero order hold equivalent 1Oth order discrete model (1.1) is defined by

T

A = e Fr; B = _eF°doG

(5.2)

O

For the numerical work, a sampling period T = 0.025 see. was selected which

corresponded to approximately 10 samples in the shortest period. The eigen-

values of A are at

0.996+j0.0250, 0.9985+j0.0500, 0.9968+j0.0750, 0.9945+j0.0998, 0.9916+j0.1246.

Using the algorithm described in Corollary 1.1 the :_ollowing results were

obtained.

Sq
2

2

2

2

2

2

rq
4

6

8

8

9

10

Pq

4 Uq is 2x2

6

9 no freeglorr t

10

q

2

3

4

5

6

>7

Hence for q = 2, 3, 4, Uq in (1.22b) can be an arbitrary 2_:2 unitary matrix, while

for q >_5 there is no remaining freedom in the q-COVER.

Optimal q-FSWL COVER designs:

cOS0q sin0q] 02 = 40°

Uq = L_sinO q cosOq] ; 03 °°

04 -- 65 °

(other cases and 1 were also checked and neither was optimal).
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The cost ranges from (2.29) for a = 1 were

1120_ = 0.3143x106 < _2 < 0.8478x106

1130g = 0-2570x106 _ 113 < 0.4764x106

1]4opt = 0.0019xl0S < 114 _ 0-1308x10S

The actual FWL output roundoff noise is given by

1 2_2w

where W bits are assigned to the fractional wordiength of the state. Hence a fac-

tor of 4 improvement in Tlq corresponds to a wordlength saving of 1 bit. There is

little savings in this example when q -- 2,3. However for q -- 4 we have a saving

of 4 bits. In practice, for fast sampling and low structural damping, the savings

would increase as the dimension of the model increases (e.g. a simply supported

beam of 50 modes with q -- 8).
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